

Simulations and Validation

Evan Fishbein AIRS Science Team Meeting Solvang, CA

2 May 2002

What Role Will Simulations Have After Launch?

- Do simulations have a role in validation?
 - Simulated data is supplemented forecast/analysis how valid is forecast/analysis?
- Do we need simulated data if we have the real thing (algorithm development)?
 - Simulated radiances correspond to perfectly-known geophysical states.
 - Are simulated data sufficiently realistic
 global variability, i.e distribution of geophysical states
 local variability, i.e distribution within retrieval states

Analysis/Forecast Data Validity

- Plentiful, but what are its error characteristics
- More accurate/precise data will take time to collect
- Use it for bootstrapping at early stages of validation
 - deprecate as more accurate/precise data are collected
 - calculate radiances to identify clear footprints
- Identify problems in analysis where AIRS can make an impact

RAOBS - Forecast Intercomparison (Global)

RAOBS - Forecast Intercomparison (Europe)

RAOBS - Forecast Intercomparison (N. America)

Simulations/Validation

Analysis/Forecast Time Series over North America

Analysis/Forecast over SGP RMS Differences

Temp 700 mb ANALYSIS RMS Error in Celsius from 00z01apr2002-00z01may2002

Surface Temperature Data

Marine

QOZO1MAY2002 AVN Temperature Coverage from MARINE_ALL

Accepted 569

Rejected 78

Турв 180

Surface Temperature Data

Land

00Z01MAY2002 STATIONS Temperature Coverage from METAR

Accepted 0

Rejected 21634 Type 187

GMB/EMC/NCEP/NWS/NDAA

RAOBS - Forecast General Observations

• RMS Temperature Differences are less than 1K

Globally 800 hPa to 300 hPa

North America 750 hPa to 300 hPa

Europe 900 hPa to 275 hPa

- Average Temperature Differences are less than 0.25K from 900hPa to 300 hPa
- Forecast/Analysis are poor near the surface
 - Analysis rejects land surface data
 - Surface model not consistent with observations

RAOBS - Forecast General Observations (cont)

- Errors are uniform over North America
 - Can it be used to extrapolate from SGP site to cloud free locations?
- When forecast/analysis and radiosonde disagree
 - reject analysis/forecast or radiosonde?
- Forecast/Analysis are poor near the surface
 - Analysis rejects land surface data
 - Surface model not consistent with observations
- Assimilation centers have experience with validation data error characteristics
 - Help with validation data quality control
 - Can they help with quality control of research data, e.g. lidar,
 ARMCART... and water vapor products?

Simulated Data and Algorithm Development

- Is simulated data sufficiently realistic for further algorithm development?
- What other options?
 - Calculate radiances from ensemble of retrieved states
 is this necessarily more realistic given quality of forecast?
 Will retrievals be robust early enough (bootstrap issue)
 - Compare statistics of radiances and simulated radiances, adjust the second to agree

Simulated Radiance Validation (IEEE Paper)

- Compare HIRS2 Radiances from NOAA 14 with reconstructed radiances
- Fit HIRS2 SRF with weighted sum of AIRS SRF

• 3 hour local time later

$$\varepsilon_i^2 = \frac{1}{2} \int \left(S_H(\nu, i) - S_H^{\text{Fit}}(\nu, i) \right)^2 d\nu$$

Sample SRF Fits

HIRS Channel 15 SRF

Simulations/Validation

Average Brightness Temperatures

Difference of Average Brightness Temperatures

HIRS2 - Reconstructed from AIRS simulated Radiances

Brightness Temperature Global Variability

Channel 1 Density Function

Channel 1 Zonal Variability

Simulations/Validation -20-

Channel 18 Density Function

AIRS Science Team Mtg 2 May 2002

Simulations/Validation -22-

Evan Fishbein

Conclusions

- Simulations have too little cloud at high altitude
 - new cloud model has been developed with cloud size tuning parameter to improve cloud amount and local variability
- Problem with too little water vapor
 - warm bias in simulated radiances
 - need improved water vapor (possibly ECMWF) to facilitate upper tropospheric water vapor retrieval
- Surface skin temperatures does not have enough variability over land
- Middle atmosphere temperature differs from observations but is realistic.

Agreement is Good

